
Style Editor / deegree Web Application Client Framework

The basic idea is that we have an application server in front of OGC Web Services (OWS).
The application server is though to be a collection of more or less indepent moduls that
interact with the web frontend (web browser) on the one side and are connected to the OWS
on the other. Because the moduls should be applicable on their own on the one hand it will
be possible to develop the different moduls independly and on the other it will be possible to
create web applications with different capabilities just by plug-in different moduls.

WMS WFS WCS WCTS Gazetteer WCAS ...

Services

Application Server

Map Client Catalog ClientStyle Editor User Managem. ...

Intra-/Internet

WebClient / Browser

Each modul should/can be implemented on basis on the deegree web client application
framework. The responsible classes are located in org.deegree.enterprise.control (interfaces)
and org.deegree_impl.enterprise.control (classes). The central idea behind the framework is
that each modul uses a servlet as central access point for web requests. Each servlet acts as
proxy to the functions that a modul offers (proxy pattern). The functions of a modul are
implemented as Listeners that are called by the proxy/dispatcher. Each web request is
assigned to a defined event. Depending on the event the responsible listener will be called
(observer pattern).

The idea is similar to that of the application server itself. Functions can added to a modul by
registering new listeners to it. Because the listeners, known by a modul, and the events they
are assigned to are defined within a configuration file, they can be set/added without
changing the source code of a modul (will be explaind in more details below).

Comming to the style editor in detail. In our opinion the greatest problem for implementing a
web based style editor is not the editing and creation of a style itself but accessing/getting
the informations that are required for it. Suggest you like to create a style that colors the
countries of the world depending on the population density. The question is what property of
the feature collection behind the layer of the map stores the population density. This
information is required to create the filter expression for the SLD. Per definition the map
produced by a WMS is an image that doesn’t contain any accessable informations about the
data behind it. So the map client application first has to determine what properties the data
(feature collection) behind a layer offers.

This is a bit difficult because even the WMS as producer of the map doesn't know it directly.
So the client application at first has to ask the WMS what OWS is behind of a layer. This can
be done using the SLD WMS DescribeLayer request. Assuming the data behind a layer are
vector data the result returns the address of the WFS that delivers the data (or the address of
a WCS if it's a rasterdata layer). Using this information the client application can perform a
get DescribeFeatureType request against the responsible WFS. The returned XML-schema
definition of the feature type contains the required informations. (Even if a style editor is
implemented as stand alone application it has to be determined what properties of what data
type are availabe for a layer, but it will be not so complicated.)

If a layer is a vector layer containing data provided by a WFS
a DescribeFeatureType request has to be performed to determine
the available properties and their data type

initial map

startl editor

get layer/feature type
DescribeLayer-Request determine Layersource

send DescribeLayer
response

editor GUI for vector
layer style editing

editor GUI for raster
layer style editing

line feature
style editing

polygon feature
style editing

point feature
style editing

get service type
and address

perform get capabilities
request

create capabilities

answer request

create capabiliites

answer request

create SLD
document

create GetMap request
for SLD WMS

store SLD document /
map context

view map

final map

create map

send map

to enable the style editor to define styles based on the
properties of a layer first the feature type of the data
contained in the layer must be determined.
The DescribeLayer operation of a SLD WMS doesn't
return the feature type definition but the information
what Service (WFS/WCS) serves the data and how
to connect it

knowing which service
provides the data of the
layer in question the client
can perform a GetCapabilities
request against this serive

perform WFS
DescribeFeatureType

create xmlschema

answer request

depending on the data
type contained in a
layer different editor
GUIs must be choosen

to make a new stype persistent it
can be stored in the users map context
or can be written back to the WMS using
the PutStyles operation of a SLD WMS

perform PutStyles
write style(s) to
the styles repository

���������	��
������������

���������	��
������������

���������	��
�����

�������
���������	��
�����

�������

�	�����������	������

��	��	
���	������	��

	����� �

����	��	�������

�������������	���

���	�����������

���	���������

�����	��������
�	���������� �� � ��� ���

So the functions that a style editor needs not only targets the creation of styles (SLD) itself
but also accessing the required feature type informations and, if required, the storage of the
created styles. As mentioned above a web based style editor may be implemented basedon
the deegree web application framework with a listener for each desured function:

AbstractListener

-alternativeDefaultTarget :String
-alternativeNext:String

-defaultTarget:String
-next:String

+actionPerformed(e:FormEvent):void

+handle(e:FormEvent):void
+getRequest

#setDefaultNextPage(target:String):void
#setDefaultAlternativeNextPage(target:String):void

+setNextPage(target:String):void
+getNextPage():String

+setAlternativeNextPage(target:String):void
+getAlternativeNextPage():String

+getReturnValue():Object
+setReturnValue (model:Object):void

-getNextPageFormRequest():void
#gotoErrorPage(message:String):void

#toModel():HashMap

ApplicationHandler

-handler:HashMap= new HashMap()
-handlerNext:HashMap= new HashMap()

-handlerANext:HashMap= new HashMap()
-EVENT:String= "event"

-NAME:String= "name"
-HANDLER:String= "handler"

-CLASS:String= "class"
-NEXT:String= "next"

-ALTERNATIVENEXT :String= "alternativeNext"

<< create >>+ApplicationHandler(configFile:String):ApplicationHandler
+actionPerformed(e:FormEvent):void

#delegateToHelper(action:String ,e:FormEvent):void
#showVersion():void

-initHandler(configFile:String):void

<< interface >>

FormEvent

+getParameter():Properties
+getDocumentPath():String

+getRequestUser():
+getSource():Object

RequestDispatcher

-CONFIGURATION:String= "Handler.configFile"

#appHandler:ApplicationHandler= null

+init():void
#service():void

#createEvent():FormEvent
#deliverEvent(event:FormEvent):void

WebEvent

<< create >>+WebEvent():WebEvent

+getParameter():Properties
+getDocumentPath():String

+getRequestUser():
+toString():String

-_getParameters():Properties
-_getRequestUser():

-_getRequest

<< interface >>

WebListener

+actionPerformed(e:FormEvent):void

1event

1

<< realize >> FormEvent<-WebEvent

<< realize >>
WebListener<-AbstractListener

<< realize >>

WebListener<-ApplicationHandler

delivers event to
a concrete Listener

StyleEditorRequestDispatcherGetWFSCapabilitiesListener

+actionPerformed(e:FormEvent):void

GetWCSCapabilitiesListener

+actionPerformed(e:FormEvent):void

FeatureTypeListener

+actionPerformed(e:FormEvent):void

createSLDListener

+actionPerformed(e:FormEvent):void

getExistingStyleListener

+actionPerformed(e:FormEvent):void

storeStyleListener

+actionPerformed(e:FormEvent):void

previewListener

+actionPerformed(e:FormEvent):void

The AbstractListener provides several methods that are
required concrete listeners to access the request
content (modell) and to change the target of the response
forwarding (see RequestDispatcher) is necessary.
The parameters of a request will be stored in a HashMap
that is declared as protected and so can be accessed
by each class extending the AbstractListener

The RequestDispatcher delivers the incoming
requests encapsulated into a FormEvent to the
ApplicationHandler. The AH acts as controller
which determines which concrete listener is
responsible for a request.

the RequestDispatcher extends the
javax.servlet.http.HttpServlet and
acts as a proxy for all web requests
to a modul. The class uses the
ServletContext-RequestDispatcher
to forward the result of a request
the target web resource (next
attribute from the configuration)

performs a GetCapabilities request
against a WFS and extracts the
information required by the style
editor from the returned capabilities
document

performs a GetCapabilities request
against a WFS and extracts the
information required by the style
editor from the returned capabilities
document

performs a DescribeFeatureType
request against a WFS and creates
a deegree FeatureType object
instance from the result

receives the style parameters from
the editor web frontend and creates
a SLD document from it using the
deegree StyleFactory and the
marschalling mechanismus of the
deegree styles

reads an existing style from the WMS
using the GetStyles request and
extracts the informations that are
needed by the editor from the result

writes a style back to the WMS
using the PutStyles request.

creates a preview for the
current style parameters set
in the style editors web
frontend

specific moduls
extends the
RequestDispatcher
to create their own
accespoint for web
requests

DescribeLayerListener

+actionPerformed(e:FormEvent):void

performs a DescribeLayer
request to determine the
responsible service for a
layer

delivers event to

�������

�������	
���
�

���� �����

���	����
��

Within the project we are doing we had implemented several moduls based on the this
architecture. So we now can say it is flexible, stable and robust. The first modul we published
in the deegree framework was a basic web map client which demostrates how to create
modules and listeners and how to configure them. For usual we use two configuration files
for each module. The first one (for usual named controller.xml) defines the association
between web events and listeners:

<?xml version="1.0" encoding="ISO-8859-1"?>
<controller>
 <event name="init" class="org.deegree_impl.clients.wmsclient.control.InitListener"
next="map.jsp"/>
 <event name="REFRESH" class="org.deegree_impl.clients.wmsclient.control.RefreshListener"
next="map.jsp"/>
 <event name="ZOOMIN" class="org.deegree_impl.clients.wmsclient.control.ZoomInListener"
next="map.jsp"/>
 <event name="ZOOMOUT" class="org.deegree_impl.clients.wmsclient.control.ZoomOutListener"
next="map.jsp"/>
 <event name="RECENTER" class="org.deegree_impl.clients.wmsclient.control.RecenterListener"
next="map.jsp"/>
 <event name="RESET" class="org.deegree_impl.clients.wmsclient.control.ResetListener"
next="map.jsp"/>
 <event name="PAN" class="org.deegree_impl.clients.wmsclient.control.PanListener"
next="map.jsp"/>
 <event name="INFO" class="org.deegree_impl.clients.wmsclient.control.InfoListener"
next="map.jsp"/>
 <event name="SELECTSTYLE"
class="org.deegree_impl.clients.wmsclient.control.SelectStyleListener" next="selectStyle.jsp"/>
</controller>

It always has the same structure. Web event are send to the HTTP-Get by setting a
parameter name 'action'.

http://localhost:8080/client/control?action=init¶m1=XXX¶m2=YYY …

The second configuration file has its own structure for each module and contains all
informations that are required; see deegree web map client configuration.xml for example.

